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Patterns of ribosomal protein expression
specify normal and malignant human cells
Joao C. Guimaraes* and Mihaela Zavolan*

Abstract

Background: Ribosomes are highly conserved molecular machines whose core composition has traditionally been
regarded as invariant. However, recent studies have reported intriguing differences in the expression of some
ribosomal proteins (RPs) across tissues and highly specific effects on the translation of individual mRNAs.

Results: To determine whether RPs are more generally linked to cell identity, we analyze the heterogeneity of RP
expression in a large set of human tissues, primary cells, and tumors. We find that about a quarter of human RPs
exhibit tissue-specific expression and that primary hematopoietic cells display the most complex patterns of RP
expression, likely shaped by context-restricted transcriptional regulators. Strikingly, we uncover patterns of
dysregulated expression of individual RPs across cancer types that arise through copy number variations and are
predictive for disease progression.

Conclusions: Our study reveals an unanticipated plasticity of RP expression across normal and malignant human
cell types and provides a foundation for future characterization of cellular behaviors that are orchestrated by
specific RPs.
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Background
Protein synthesis is at the core of cellular life. It is car-
ried out by the ribosome, a highly conserved molecular
machine with the same basic architecture in all free-
living organisms [1–3]. In humans, the ribosome is com-
posed of four ribosomal RNAs (rRNAs) and 80 riboso-
mal proteins (RPs), and its structure is believed to be
largely invariant [4]. However, recent studies have
started to uncover some degree of variability in riboso-
mal components, such as at the level of rRNA modifica-
tions and RP expression. These have also been linked to
both ribosomal function and the physiological state of
cells (reviewed in [5, 6]).
Variability in ribosomal components could lead to a

vast number of ribosome variants. Alternatively, the dif-
ferent components may have extra-ribosomal functions,
as some ribosomal proteins do. Since synthesis of trans-
lational machinery components represents a large part
of the energetic cost of cellular life, the abundance of
ribosomal proteins is expected to be under tight control.

Indeed, many feedback mechanisms have been discov-
ered that link the production of different ribosomal
components to maintain an appropriate stoichiometry
[7]; a number of RPs act in negative feedback loops to
control their own expression as well as the expression of
other RPs, either at the level of splicing [8, 9] or at the
level of mRNA decay [10]. In bacteria, RPs frequently
regulate, in negative feedback, the translation of entire
RP operons [11, 12]. In eukaryotes, imbalanced RP levels
frequently engage the p53 pathway [13–15] to cause cell
cycle arrest and apoptosis. Aside from the feedback on
ribosome biogenesis, perturbed expression of distinct
RPs elicits a broad spectrum of phenotypes, from devel-
opmental defects to diseases [5, 6].
Interestingly, analysis of mRNA abundance revealed

considerable differences in RP expression across human
tissues [16], in mouse development [17], and in cancers
[18–24]. However, the functional significance of such vari-
ation, as well as the underlying RP-dependent regulatory
mechanisms, has remained insufficiently studied. Insights
into the physiological roles of specific RPs have mostly
come from naturally occurring phenotypes or diseases as-
sociated with RP loss of function. For instance, Rpl38, a
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component of the large ribosomal subunit, is essential for
the appropriate axial skeleton formation in mouse embry-
onic development [17]. The 5′ untranslated regions (5′
UTRs) of Hox mRNAs contain sequence elements that
prevent translation of the corresponding transcripts unless
the Rpl38 protein enables the recognition of their internal
ribosome entry site (IRES)-like elements [25]. Further-
more, a striking number of human hematological disor-
ders such as Diamond-Blackfan anemia (DBA) [26], T-cell
acute lymphoblastic leukemia [27], and the 5q- syndrome
[28] have been linked to mutations or chromosomal dele-
tions which cause RP deficiencies. The consequences can
be remarkably circumscribed, as in the case of RPS19, an
RP frequently mutated in DBA patients, whose haploin-
sufficiency leads to reduced translation of GATA1 mRNA
[29] and subsequent defects in erythrocyte maturation.
Cancer cells have a remarkable ability to evade anti-

tumorigenic signals that control normal tissue architec-
ture and progress into a chronic proliferation program
[30]. The high demand for protein synthesis in rapidly div-
iding malignant cells leads to increased ribosome bio-
genesis [31]. Surprisingly, however, dysregulation of
specific RPs has been observed in both cancer cell
lines and patient samples [18–24]. The roles of indi-
vidual RPs seem rather difficult to predict. For ex-
ample, by binding to the 5′UTR of p53 mRNA and
enhancing its translation, RPL26 can trigger programmed
cell death [21]. The ectopically overexpressed RPL36A has
an entirely different function, localizing to nucleoli
and increasing colony formation and cell growth of he-
patocellular carcinoma lines, presumably through a
more rapid cell cycling program [20]. Thus, some RPs
can act as tumor suppressors, whereas others promote
tumorigenesis.
Despite the increasing body of evidence that individual

RPs have cell-type-specific functions, a comprehensive
study of RP expression heterogeneity across human cells
has not been carried out so far. Furthermore, the factors
that drive differential RP expression in distinct cellular
contexts remain largely unknown. Through a comprehen-
sive analysis of human RP expression pattern across 28 tis-
sues, more than 300 primary cells, and 16 tumor types, we
here estimate that about a quarter of RP genes exhibit
tissue-specific expression. We find a particularly high RP
expression heterogeneity in the hematopoietic system,
where a small number of RP genes unequivocally dis-
criminate cells of distinct lineages and developmental
stages. Our analysis of transcription regulatory ele-
ments located in the promoters of RP genes indicates
that key hematopoietic transcription factors could or-
chestrate the observed patterns of RP expression. Strik-
ingly, we uncover a consistent dysregulated expression of
individual RPs across cancers, which can be partially
explained by copy number alterations. Our analysis

suggests prominent roles of specific RPs in health
and disease.

Results
RP genes are differentially expressed across tissues
We used the promoter-level expression atlas generated
by the FANTOM Consortium [32] to evaluate the ex-
pression of 90 distinct RP genes, including 19 paralogs,
across adult human tissues (Fig. 1). Although the mRNA
levels of RPs within a tissue spanned a wide range, two
(brain) to three (blood) orders of magnitude (Additional
file 1: Figure S1a), they were highly correlated between tis-
sues (median Pearson correlation coefficient R = 0.96),
consistent with a strongly conserved stoichiometry of ribo-
somal components across tissues. The total RP expression
was strongly correlated with the proliferation index of the
tissue (R = 0.81, P < 0.0001, Additional file 1: Figure S1b),
indicating that the proliferative state of cells explains most
of the variability in global RP expression across tissues.
Once the global tissue-dependent effect on expression

levels was removed, the standard score-normalized ex-
pression of each RP was very consistent across tissues,
with some notable exceptions (Fig. 2a). Tissue-specific
patterns of RP expression are also evident at the protein
level (Additional file 1: Figure S1c–f ). For example, the ex-
pression of RPL3L, a paralog of the canonical ribosomal
protein RPL3, is markedly higher in skeletal muscle —
where it was found to regulate growth [33] — compared
to other tissues. Similarly, the testis-specific RPL39L has
been shown to be present in the ribosomes isolated from
testis but not from other rodent tissues [34]. The conser-
vation of these expression patterns across different verte-
brates further attests their physiological relevance (Fig. 3).
To systematically evaluate the tissue specificity of RP ex-

pression, we computed ”specificity scores,” defined as the
deviation of RP expression levels in each particular tissue
from the average across tissues (Fig. 1). Positive and negative
scores indicate a higher and lower than expected expression
level in a specific tissue, respectively. At a specificity score
threshold corresponding to 2.5 standard deviations (SDs),
24 of the 90 (~27%) human RP genes exhibit tissue specifi-
city of expression (Fig. 2b, Additional file 2: Table S1). Im-
portantly, specificity scores for the different human tissues
can be reproduced using a different tissue expression atlas
(Additional file 1: Figure S1g). We identified both relatively
up- (~66%) and down-regulated (~33%) RP genes. Interest-
ingly, paralogs were particularly enriched among RP genes
with tissue-dependent expression (P < 0.05, Fisher’s exact
test), as may be expected if they underwent functional
specialization. RP paralogs are highly similar but generally
not identical to their canonical counterparts (Additional
file 1: Figure S1h). Although only about a quarter of all RPs
showed evidence of tissue-specific expression in human,
for about half of the investigated tissues the specificity
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scores of all RPs were significantly correlated between dif-
ferent vertebrates (Additional file 1: Figure S2).

Extensive RP expression heterogeneity in the
hematopoietic system
Profiling gene expression at the level of tissues, which
are complex environments populated by a myriad of cell
types, likely obscures differences between distinct cell
types. Therefore, we have further analyzed expression of
RP genes in more than 300 samples from human primary
cells originating from all the three germ layers [32]. Princi-
pal component analysis (PCA) revealed two main clusters
(Fig. 4a), one very broad and almost entirely composed of
hematopoietic cell types, and the other more compact,
containing all remaining cell types. Distinct primary
hematopoietic cells were also clearly distinguishable in
the PCA (Fig. 4b): lymphoid cell types (natural killer, T,
and B cells) formed a compact cluster, whereas myeloid cell
types were more scattered. Samples from hematopoietic
precursors also clustered together and away from differenti-
ated cells. Finally, pooled blood samples were highly similar
and clearly distinguishable from individual cell types,
underscoring the importance of analyzing primary cells to
grasp the degree of RP expression heterogeneity across
elementary cell types.
Aggregating hematopoietic samples by cell type and per-

forming PCA of the specificity scores of each RP in each
cell type relative to hematopoietic stem cells revealed two
distinct clusters corresponding to the lymphoid and mye-
loid lineages (Fig. 4c). Hierarchical clustering showed that
multiple RPs appear to be coordinately regulated in

subgroups of related cell types (Fig. 4d). For instance,
RPS29 and RPS27L exhibit antagonistic expression pat-
terns in lymphoid and myeloid cell types, whereas RPL36A
and RPS3A are more specific for mature erythrocytes.
Interestingly, precisely the opposite pattern is observed
when comparing RPS29 and RPS27L expression in cell-
line models of lymphoma/lymphoid leukemia, which
represent intermediate developmental stages, and
mature lymphocytes (Additional file 1: Figure S3). This
strengthens the hypothesis of a connection between RP
expression regulation and the hematopoietic develop-
mental program. Similarly, RP genes with myeloid-
lineage specificity in our analysis, such as RPS27L [35],
RPS15 [36], and RPS24 [37], have been previously impli-
cated in bone marrow deficiencies.

Promoters of hematopoietic lineage-specific RPs display
distinct regulatory signatures
The intriguing observation that RPs exhibit tissue-specific
and cell-type-specific variations in expression raises the
question of what transcriptional regulators are responsible
for these changes. Recent work revealed the complexity of
transcriptional regulation of human genes, most of which
have multiple promoters that are selectively activated in a
tissue-specific manner [32]. The promoter-level expression
atlas allowed us to examine the usage of individual RP gene
promoters (1 to 16 per RP, with a median of 3) across
tissues and primary hematopoietic cells. Surprisingly,
although cases of single and multiple active promoters
for a given RP are represented in the data (Additional
file 1: Figure S4a,b,c), the tissue and hematopoietic cell-
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type-specific RP genes do not show an increased usage
of alternative promoters with respect to non-specific
RPs (Additional file 1: Figure S4d,e,f ).
We next examined the predicted binding sites of 495

transcription factors (TFs) [38] and found a surprising
degree of heterogeneity in the number of RP promoters
predicted to be targeted by individual TFs (Additional
file 1: Figure S5a). This suggests that TFs may provide
context-specific regulation of RP genes. To test this hy-
pothesis, we first determined the TFs that are most specif-
ically expressed in the different hematopoietic lineages. As
expected, previously described lineage-specific TFs showed
a strong expression bias toward the corresponding cell

types: STAT4 for the lymphoid [39] (Fig. 5a) and GATA1
for the erythroid [40] (Fig. 5b) lineages. Other well-known
cell-type-specific TFs such as CREB1, which is active in
lymphoid cells [41, 42], did not show particularly strong ex-
pression bias (Fig. 5c), possibly because it is its activity, ra-
ther than its expression level, that changes between cell
types. Indeed, if we estimate the activity of TFs by modeling
the expression level of their targets [38], we can identify
TFs whose activity changes in a cell-type-specific manner
(Fig. 5d–f), even when the corresponding expression levels
remain invariant (Fig. 5c and f).
We then asked whether binding motifs of TFs with

lineage-specific activities are enriched in the promoters of
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RP genes that exhibit a matching lineage specificity of ex-
pression. Remarkably, as shown for three RP genes with the
largest variance in specificity scores across developmental
lineages: the lymphoid-specific RPS29, myeloid-specific
RPS27L, and erythrocyte-specific RPS3A (Fig. 4d), their
promoters are predicted to be preferentially targeted by
TFs with a matching lineage-specific activity (Fig. 5g,h
and Additional file 1: Figure S5b). Although data per-
taining to the direct interaction of TFs with RP pro-
moters in individual hematopoietic lineages are lacking,
chromatin immunoprecipitation studies carried out by the
Encyclopedia of DNA Elements (ENCODE) consortium
[43] confirm that the TF-RP promoter interactions that we
predicted here do occur at least in some cell lines in which
these TFs are expressed (Fig. 5i). Generalizing the analysis
to comprehensive sets of RPs that exhibit lymphoid, mye-
loid, or erythroid specificity of expression leads to a similar
result (Additional file 1: Figure S5c–n). Altogether, our

analysis indicates that cell-type-specific patterns of RP ex-
pression could be explained by the binding of multiple TFs
with lineage-restricted activity to individual RP promoters.

Dysregulated expression of specific RP genes in cancers
We next used the The Cancer Genome Atlas (TCGA)
data to compare RP expression levels in matched normal
and malignant tissue samples. Notably, we observed a
median increase of ~30% in the median RP expression
levels of tumors as compared to the corresponding nor-
mal tissue samples (Additional file 1: Figure S6a). Some
cancers, such as bladder and breast carcinomas, did not
exhibit an overall increase in RP expression, a possible
reason being that the cancer induces alterations into the
adjacent tissue, which still looks ”normal” at the histo-
logical level. We then estimated dysregulation scores for
each individual RP by comparing the expression levels in
matched normal and tumor tissues and found an
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intriguing consistency across cancers (Fig. 6a). The vari-
ation in RP expression could be partially explained by
copy number variation (Fig. 6b–d), indicating that the
dysregulation of RP genes in cancer is strongly driven by
genomic alterations. Several RP genes, some of which
had been previously associated with p53 activation [6],
consistently exhibited negative dysregulation scores
across cancers (Fig. 6a, blue line). These RPs probably
act as tumor suppressors. In the gene cluster exhibiting
a consistent positive dysregulation score in distinct can-
cer types (Fig. 6a, red line) we identified proteins that
have been previously associated with increased prolifera-
tion phenotypes, such as RPL36A [20] and RPS2 [44].
Remarkably, the average RP dysregulation scores esti-
mated across cancers were significantly anti-correlated
with the enrichment of the corresponding single guide
RNA (sgRNA) in a CRISPR screening for cell viability
[45] carried out in a melanoma cell line (Additional file
1: Figure S6b). This provides independent evidence for
the role of specific RPs in the viability of cancer cells.
RPL39L, an RP gene paralog with testis-specific expression

(Fig. 2a), which was previously found up-regulated in hepa-
tocellular carcinoma and in some cancer cell lines [24, 46],
had the most striking bimodal pattern of expression across
carcinoma types. RPL39L is also consistently up-regulated
in several cell-line models of breast and lung carcinoma,
indicating that these cell lines could be used to study the
function of this protein in tumorigenesis (Additional file 1:
Figure S6c).
Our systematic analysis further revealed that numerous

RPs exhibited strong dysregulation only in particular can-
cer types (Fig. 6a). Among these, RPL26L1 and RPS27L
were exclusively up-regulated in breast and thyroid carcin-
omas, respectively, whereas RPL21 had decreased expres-
sion in breast and uterine cancers. Strikingly, some RP
gene knockouts, including RPL21, have been positively se-
lected in a CRISPR-based viability screen carried out in a
melanoma cancer cell line (Additional file 1: Figure S6b)
[45]. This indicates that RP gene loss is not always detri-
mental for cellular fitness. To further evaluate the rele-
vance of RP expression dysregulation, we examined the
relationship between patients’ relapse-free survival and
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the expression levels of the RP genes that we inferred to be
relevant for breast carcinoma. We found that high levels of
RPL39L and RPL26L1 and a low level of RPL21 are associ-
ated with significantly lower patient relapse-free survival
rates (Fig. 6e), whereas the expression levels of other RPs,
not found to be dysregulated in patients, showed a much
milder or insignificant association with prognosis (Fig. 6f).

A classifier combining the expression signature of
RPL39L, RPL26L1, and RPL21 has an even greater pre-
dictive power, comparable to that of genes that are most
predictive [47] for the relapse-free survival of breast
cancer patients (Fig. 6g). Our data highlight the potential
of using RP expression signatures for predicting disease
progression.
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Discussion
In view of the strong selection pressure for translation
accuracy, the ribosome has largely been viewed as an
invariant, highly optimized molecular machine. Its com-
ponents exhibit relatively little expression variability in
populations of identical cells [48]. Therefore, the finding
that a myriad of phenotypes can emerge from modulating
expression of ribosomal components in Saccharomyces
cerevisiae came as a surprise [49]. In support of the func-
tional specialization of different RPs, gene expression ana-
lyses have reported the differential expression of RPs at
the organ level both in humans and mice [16, 17]. Add-
itionally, a few studies have started to reveal an association
between individual RPs and tumorigenic phenotypes [18–
24]. However, the full extent of RP expression heterogen-
eity can only be appreciated by systematically analyzing
individual cell types and distinct biological contexts. Here
we undertook this characterization in a large set of human
tissues, primary cells, and cancer samples (Fig. 1).

As hinted in previous reports [16, 50], we found that
human tissues display a notable level of RP expression
heterogeneity (Fig. 2), with around one quarter of all RP
genes exhibiting tissue-specific expression. Attesting for
their functional relevance, these expression patterns are
also conserved between vertebrate species that are hun-
dreds of million years apart (Fig. 3). As may be expected,
RPs exhibiting tissue-specific expression tend to be para-
logs of canonical RPs, to which they are highly similar in
sequence. Although it is tempting to speculate that these
duplicated genes were co-opted for extra-ribosomal func-
tions in the tissues in which they are expressed, at least in
some cases these RP paralogs are found in ribosomes [34],
strongly suggesting that they actively engage in translating
complexes. An intriguing possibility is that up-regulated
non-canonical RP gene paralogs compete with their ca-
nonical counterparts during ribosome biogenesis to yield
”specialized ribosomes” that enable selective translation of
mRNAs [5, 51].
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Fig. 6 Dysregulation of RP expression in cancers is linked to survival. a Heatmap showing the dysregulation scores of individual RP genes in
cancers. There are three prominent clusters of RPs, corresponding (from left to right) to consistently negative (blue line), variable, and consistently
positive (red line) dysregulation score across different cancers. RPs reported to be involved in p53 regulation are marked with a dot. Several
cancers also exhibit dysregulation of specific RP genes. COAD colon adenocarcinoma, READ rectum adenocarcinoma, PRAD prostate adenocarcinoma,
BLCA bladder urothelial carcinoma, THCA thyroid carcinoma, KICH kidney chromophobe, KIRP kidney renal papillary cell carcinoma, KIRC kidney renal clear
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95% confidence interval as well as logrank P values are shown for each survival analysis

Guimaraes and Zavolan Genome Biology  (2016) 17:236 Page 8 of 13



Profiling gene expression in complex tissues/organs has
likely masked differences between individual cell types. In-
deed, analyzing the data from more than 300 human pri-
mary cells (Fig. 4), we found a high degree of RP expression
heterogeneity in hematopoietic cells, where a small subset
of RPs can discriminate cell types belonging to different
hematopoietic lineages. Consistently with our results, ribo-
somopathies, which are disorders resulting from defective
ribosome function, often lead to bone marrow failure phe-
notypes (reviewed in [52]). In remarkable agreement with
our predictions, the depletion of some of the RPs found
here to exhibit lineage-biased expression, such as RPS15
[36], RPS24 [37], and RPS27L [35], has been associated with
malignancy and abnormalities in the maturation process of
the respective cell types. Nonetheless, some of the RPs
whose disruption was previously linked to erythroid differ-
entiation defects, such as RPS19 in DBA [26] and RPS14 in
5q- syndrome [28], did not display any noticeable expres-
sion specificity in our analysis, at least in the mature cell
types analyzed. The reason for this discrepancy is unclear,
one possibility being that these proteins exert their specific
functions at stages of erythropoietic development that were
not captured in the promoter atlas. Nevertheless, our ana-
lysis strongly suggests that some RPs are involved in the
specification of hematopoietic lineages through mecha-
nisms that largely remain to be uncovered. A first hint was
offered by a recent study which showed that haploinsuffi-
ciency of RPS19 leads to specific translation defects in the
GATA1 mRNA [29], a master transcriptional regulator of
erythropoiesis. Understanding the basis of this strong trans-
lation selectivity remains a challenge. Crosslinking and im-
munoprecipitation [53] of individual RPs may enable the
discovery of their specific targets and the inference of inter-
action determinants.
An outstanding question still is what upstream regulators

modulate the expression of RPs in different cell types. We
found little evidence for differential promoter utilization in
the modulation of RP gene expression across different
tissues and cell types. Rather, we observed that the pro-
moters of RPs that are differentially expressed in primary
hematopoietic cells display unique regulatory finger-
prints (Fig. 5). Interestingly, a recent study has shown
that GATA1 TF binds to the promoter of RPS19 in pri-
mary human erythroid cells [54], which in turn has been
shown to be essential for the efficient translation of the
GATA1 mRNA [29]. Our results thus suggest that key
transcriptional regulators orchestrate the production of
cell-type-specific transcripts, including those encoding
ribosomal proteins.
We observed intriguing patterns of RP expression in

cancers. Several RP genes, some of which had been previ-
ously associated with p53 activation, consistently exhibited
negative dysregulation scores across cancers (Fig. 6). These
RPs may thereby act, directly or indirectly, as tumor

suppressors. In some cases, the underlying molecular
mechanisms have been described. For example, RPL5 [13]
and RPL11 [14] have the capacity to translocate to the nu-
cleoplasm, where they bind to H/MDM2, preventing p53
ubiquitination and degradation, whereas RPL26 enhances
the translation efficiency of the p53 mRNA [21]. In the
cluster of RPs that have positive dysregulation scores
across distinct cancers we identified several proteins, some
of which had been previously associated with increased
proliferation phenotypes, such as RPL36A [20] and RPS2
[44]. Surprisingly, we found that RPL39L, an RP gene para-
log exhibiting testis-specific expression (Fig. 2), is consist-
ently up-regulated in several carcinomas. The function of
RPL39L, which differs from its paralog by only four amino
acids, remains to be characterized. Although it is not en-
tirely clear why increased expression of these particular
RPs would confer a selective advantage to malignant cells,
one could speculate that they are directly involved in se-
lective activation of oncogenes [55] or inhibition of tumor
suppressors [56]. Most unexpected was that a number of
RPs exhibited strong dysregulation only in particular can-
cers, which suggests idiosyncratic responses of RPs to spe-
cific cellular microenvironments. For instance, although
RPL26 was reported to bind the 5′UTR of p53 mRNA to
enhance its translation in a breast cancer cell line [21], we
here find that its paralog, RPL26L1, is specifically up-
regulated in breast carcinoma. This suggests the possibil-
ity that RPL26L1 competes with RPL26 and counteracts
its effect on p53 mRNA translation, thereby providing a
permissive environment for cellular transformation. A
similar behavior has been observed in zebrafish embryos,
where the RP paralogs Rpl22 and Rpl22l1 exert antagonis-
tic effects on smad1 mRNA translation, thereby having di-
vergent functions in hematopoietic development [57]. In
summary, we identified multiple “signatures” of dysregu-
lated RPs in a variety of cancers. These signatures, which
seem to originate from copy number variations, include
not only over-expressed but also down-regulated RPs and,
unexpectedly, have a significant prognostic value.
The control of RP abundances in eukaryotes extends

across multiple regulatory layers including transcription
[58], direct and indirect splicing-dependent mechanisms
[59, 60], translation [61, 62], as well as protein turnover
[63]. We have inferred the context-specific expression of RP
genes mostly from measurements of mRNA abundance that
are more readily available. The need to validate the propaga-
tion of these expression patterns to protein level remains,
and one hopes it will be addressed by future proteomic
studies. It is also important to recognize that other
post-transcriptional regulatory layers may contribute to
context-specific expression of RPs. For example, RP-
encoding mRNAs contain a remarkably diverse set of
translation-regulatory signals [64] that are capable of
tuning protein abundances. These include specific codon
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and amino acid usage of individual RPs [65] which are
known to influence translation rates both in prokaryotes
[66] and eukaryotes [67].
The striking patterns of ribosomal protein expression

across cellular contexts reported here highlight the role
of individual RPs. As new high-throughput datasets be-
come available and the molecular mechanisms of spe-
cific RPs start to be revealed, our understanding of RP-
mediated functional specialization becomes clear. So
far at least three possible distinct mechanisms seem to
be involved: (1) global change in protein synthesis rate
[68, 69]; (2) modulation of translation rates of specific
mRNAs by ribosomal proteins, independently or as part
of the ribosomal complex [17, 21, 29, 70, 71]; and (3)
other extra-ribosomal functions of specific ribosomal
proteins (reviewed in [7]). Nevertheless, predicting the
phenotypes of perturbed RP expression remains very
challenging, which suggests that an exciting branch of
cellular biology still remains to be discovered.

Conclusions
Our study reveals an unanticipated plasticity of RP ex-
pression across normal and malignant human cells. We
found that RPs can help in the identification of cell types
and that cancer cells exhibit complex, yet reproducible
patterns of RP expression, which could serve as prog-
nostic or diagnostic markers. As evidence for cell type
specificity of expression of individual RPs is accumulat-
ing, our study provides a foundation for characterizing
cellular behaviors that are orchestrated by specific RPs.
Additionally, because the regulatory signals that tune RP
abundances in individual cell types are not well defined,
we anticipate that our study will provide entry points
into such studies in the coming years. Ultimately, we
hope that a deeper understanding of regulatory mecha-
nisms that are dependent on specific RPs will open up
new therapeutic opportunities.

Methods
Gene expression datasets
Promoter expression data (normalized relative log expres-
sion) for human tissues, primary cells, and cell lines were
obtained from the FANTOM5 project [72]. Promoter ex-
pression levels were aggregated to yield gene-level expres-
sion estimates. To further confirm the consistency of tissue-
specific RP gene expression, we used an additional gene ex-
pression dataset from the Human Protein Atlas [73].
Gene expression estimates for matched normal and ma-

lignant tissue samples were retrieved from The Cancer
Genome Atlas (RNASeqV2 RSEM, normalized expression).
mRNA expression levels for different cancer cell lines were
retrieved from the Cancer Cell Line Encyclopedia (RMA,
normalized expression) [74].

RP gene expression data for five different vertebrates
(four mammals and one bird) were obtained from [75].
All gene expression datasets were log2-transformed

after the addition of a pseudo-count.

Protein expression dataset
Protein abundance data were retrieved from the Human
Protein Atlas [73], which provides qualitative antibody-
based measurements of protein expression across 83 differ-
ent cell types belonging to 44 tissues. Briefly, for each gene,
tissue microarray (TMA) immunohistochemical staining
was performed using single as well as multiple antibodies
for the same protein so as to derive accurate estimates of
protein expression. The stained TMA slides were then
scored (not detected, low, medium, or high expression)
with respect to the intensity of immunoreactivity, the frac-
tion of immunostained cells, and cellular localization of im-
munoreactivity. The protein expression of RPL39L and
RPL3L was probed using 2 and 1 antibodies, respectively.
When reporting qualitative protein levels in tissues for
which multiple cell types were available, the one displaying
higher abundance was selected as done in the Human Pro-
tein Atlas [73]. For additional confirmation using an inde-
pendent dataset, we also retrieved from [76] the protein
expression levels that were measured by mass spectrometry
from a handful of tissues.

Proliferation index
For each tissue, we summed the expression levels (tran-
scripts per million) of over 300 genes previously reported
to define a cellular proliferation signature [77], which we
then normalize between 0 and 1 using the minimum
and maximum sums registered across tissues. Import-
antly, there are only two genes in common between
this set of genes and RP genes.

Specificity score
Following the observation that RP expression levels are
strongly correlated between pairs of tissues, we calculated
the normalized deviation from the fitted linear relation be-
tween the RP expression levels in each tissue and the aver-
aged RP expression levels across all tissues (i.e., the
standardized residual). We called this the ”specificity
score.” These scores reflect the number of standard devia-
tions (SDs) away from the mean deviation across all
RPs. To estimate RP specificity scores in the different
hematopoietic cell types, we used the same approach
but compared the expression level of RPs in a particular
cell type with that in hematopoietic stem cells. We
considered that an RP has cell-type-/tissue-specific
expression if |specificity score| > 2.5 SD, which, given
the normal distribution of the standardized residuals,
corresponds on average to the region outside the 97.9
percentiles.
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Relative promoter usage across samples
For each RP gene, we first normalized the expression level
of each promoter by the total expression level of all pro-
moters in a given sample (tissue or primary cell), and then
computed the mean usage of each promoter across all
samples.

Analysis of transcription factor activity in hematopoietic
cell types
We used ISMARA [38] to estimate the activity of 495 dif-
ferent transcription factors in the different hematopoietic
cell types. In brief, ISMARA models the expression levels
of all mRNAs in terms of the TF binding sites present in
the respective gene promoters and the activity of all TFs.
The explanatory power of any given TF in a sample is
then summarized by its activity z-score. Positive and nega-
tive z-scores indicate that genes targeted by that TF are
up-regulated and down-regulated in the associated cell
type, respectively.

Analysis of transcription regulatory elements in human
RP gene promoters
We obtained the regulatory maps for all human pro-
moters from [38]. Briefly, these maps were constructed by
evaluating posterior probabilities of motifs representing
the sequence specificity of transcription factors, taking
into account the pattern of evolutionary conservation in
promoter regions. The data were summarized in a matrix
whose elements were the scores of the binding sites for
each TF motif (columns) in each promoter region (rows).
For any given RP gene, we only considered the regulatory
motifs predicted in the promoter showing the highest evi-
dence of expression.

Transcription factor ChIP analysis
Genomic TF binding sites and respective scores were re-
trieved from the UCSC Genome Browser, track “Txn
Factor ChIP.” TF binding sites were assigned to RP gene
promoters if they were localized within 5 kb of the re-
spective transcript start site.

Dysregulation score
We included in our analysis all cancer types for which
matched normal and tumor solid tissue samples were
available for at least five patients. For each patient, we
computed RP dysregulation scores as the standardized re-
siduals estimated from the linear fit between the RP ex-
pression levels in the tumor and normal tissue samples
(similar to the specificity score defined above). For each
cancer type, we then calculated the median dysregulation
score for each RP across all patients. These scores were
finally standard score-normalized over all RP genes for
each cancer so as to enable their comparison across

cancer types. We considered an RP to be dysregulated in a
particular cancer if |dysregulation score| > 2.5 SD.

Copy number variation analysis
Putative copy number alterations estimated using GISTIC
2.0 [78] for all RP genes across different cancers were
retrieved from the cBioPortal [79, 80]. Deep and shallow
deletions were both classified as deletions, whereas gain
and amplifications were grouped as gain alterations. We
then calculated the relative frequency of deletion, gain, or
no alterations for each RP gene in any given cancer type,
and we averaged these numbers across all cancers to yield
global estimates of copy number alterations.

Breast cancer survival analysis
We used the Kaplan-Meier Plotter to calculate the relapse-
free survival rates of 3557 patients with breast cancer.
Tumor samples were split into “low” and “high” levels with
respect to the median gene expression of the RP (or group
of RPs) across the cohort.

Protein sequence alignment
Sequences of ribosomal protein paralogs were aligned using
the Needleman-Wunsch global alignment algorithm.

Statistical analysis
Reported correlation coefficients are Pearson product-
moment correlation coefficients. Statistical tests comparing
distributions were performed using the non-parametric
Mann-Whitney U test.

Hierarchical clustering
Clustering was performed using Euclidean distance and
Ward’s minimum variance method.
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